Catalytic graphitization of three-dimensional wood-derived porous scaffolds
نویسندگان
چکیده
منابع مشابه
Catalytic graphitization of three-dimensional wood-derived porous scaffolds
A catalytic technique to enhance graphite formation in nongraphitizing carbons was adapted to work with three-dimensional wood-derived scaffolds. Unlike many synthetic graphite precursors, wood and other cellulosic carbons remain largely disordered after high temperature pyrolysis. Using a nickel nitrate liquid catalyst and controlled pyrolysis conditions, wood-derived scaffolds were produced s...
متن کاملIncreased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than por...
متن کاملCharacterization of Wood Derived Hierarchical Cellulose Scaffolds for Multifunctional Applications.
Functional materials of high porosity and hierarchical structure, based on renewable building blocks, are highly demanded for material applications. In this regard, substantial progress has been made by functionalizing micro- and nano-sized cellulose followed by its reassembly via bottom-up approaches. However, bottom-up assembly processes are still limited in terms of upscaling and the utiliza...
متن کاملOpen-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells
Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, in...
متن کاملThree-dimensional printing of porous ceramic scaffolds for bone tissue engineering.
This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Research
سال: 2011
ISSN: 0884-2914,2044-5326
DOI: 10.1557/jmr.2010.88